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ABSTRACT
The vastly more superior regenerative capacity of the axons of peripheral nerves over central nervous system (CNS) neurons has been partly
attributed to the former’s intrinsic capacity to initiate and sustain the functionality of a new growth cone. Growth cone generation involves a
myriad of processes that centers around the organization of microtubule bundles. Histone deacetylases (HDACs) modulate a wide range of key
neuronal processes such as neural progenitor differentiation, learning and memory, neuronal death, and degeneration. HDAC inhibitors have
been shown to be beneficial in attenuating neuronal death and promoting neurite outgrowth and axonal regeneration. Recent advances have
provided insights on howmanipulating HDAC activities, particularly the type II HDACs 5 and 6, which deacetylate tubulin, may benefit axonal
regeneration. These advances are discussed herein. J. Cell. Biochem. 115: 1225–1233, 2014. © 2014 Wiley Periodicals, Inc.
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Central nervous system (CNS) neurons and peripheral nerves
differ greatly in their ability to regenerate severed axons.

While lesioned tips of peripheral nerves could form a growth cone
[Bradke et al., 2012], axotomy of CNS neurons invariably result in
the formation of characteristic swellings known as retraction bulbs
[Ertürk et al., 2007]. In general, there are two main reasons why CNS
neurons are normally regeneration incompetent. The first pertains to
the inhibitory CNS environment, where a number of myelin-
associated inhibitors and extracellular matrix proteins transduce
signals that inhibit axonal growth and promotes growth cone
collapse [Yiu and He, 2006; Lee and Zheng, 2012]. The second is
down to the diminished intrinsic regenerative capacity of adult CNS
neurons [Liu et al., 2011]. The “intrinsic regenerative capacity” is a
broad term encompassing many factors, including responses to
neuronal survival and growth factors [Lykissas et al., 2007], the
ability to perform local protein synthesis [Willis and Twiss, 2006], as
well as the ability to stabilize the microtubule bundle to form a
growth cone [Hellal et al., 2011]. Post-translational modifications of
tubulin affects microtubule stability and functions [Hammond
et al., 2008]. One such modification is acetylation/deacetylation of
lys-40 of a-tubulin, which impacts on cell motility, cell differentia-
tion, and intracellular trafficking and signaling [Janke and
Kneussel, 2010; Perdiz et al., 2011].

Lysine acetylation is a key post-translational modification of
many proteins, and which underlie many aspects of gene
transcription, cellular signaling, cellular transport, and metabolic
changes [Arif et al., 2010; Patel et al., 2011; Scott, 2012]. Acetylation
of nuclear histone and a myriad of nuclear and cytoplasmic proteins
are mediated by the histone acetyltransferases (HATs) [Roth
et al., 2001]. The acetyl moiety is in turn removed by a large family
of protein deacetylases, which are divided phylogenetically into four
classes [Yang and Seto, 2007]. The Rpd/Hda1 family comprises
classes I, II, and IV, and consist of 11 histone deacetylases (HDACs),
1–11 in mammals [Yang and Seto, 2008]. The class III deacetylases
consist of members of the sirtuin family (Sirt1–6), which are
enzymatically distinct from the other HDACs because of their
dependence on the cofactor nicotinamide adenine dinucleotide
(NADþ) [Haigis and Sinclair, 2010]. Class I HDACs are primarily
nuclear proteins that function as essential modulators of transcrip-
tional and epigenetic landscaping, and are often found in association
with nuclear repressor/co-repressor complexes [Grzenda
et al., 2009]. The class II HDACs, however, shuttle between the
cytoplasm and the nucleus, and could therefore act as cytoplasmic-
nuclear signal transducers, as well as acting on cytoplasmic
substrates. Although termed histone deacetylases, the HDACs and
sirtuins have a wide range of non-histone nuclear and cytoplasmic
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substrates [Yang and Seto, 2008; Haigis and Sinclair, 2010].
Acetylated tubulin, for example, is one major cytoplasmic substrate
for HDAC6 [Zhang et al., 2003] and Sirt2 [North et al., 2003].

HDACs play key regulatory roles during embryonic development
and postnatal function, and HDAC inhibitors have shown therapeu-
tic promises in human diseases ranging from cancer [Minucci
and Pelicci, 2006] to neurodegenerative disorders [Dietz and
Casaccia, 2010]. Pertaining to neuronal function and survival, two
common findings are that HDAC inhibition improves neuronal
survival [Uo et al., 2009; Brochier et al., 2013], and promotes
recovery of cognitive deficits [Fischer et al., 2007; Vecsey et al.,
2007; Covington et al., 2009; Foley et al., 2012; Gräff et al., 2012;
Morris et al., 2013]. The former may, at least partly, be due to
suppression of p53-induced cell death by the class I HDACs 1, 2, and
3 [Juan et al., 2000]. On the other hand, recovery of learning/memory
capacity and cognitive ability have been shown to involve HDAC2
[Guan et al., 2009], whereas HDAC3 inhibition have been implicated
in enhancing the memory processes involved in the extinction of
drug-seeking behavior [Malvaez et al., 2013]. HDAC4 represses
genes encoding proteins functioning at the synapses, and a
truncated form of HDAC4 encoded by a human allele associated
with mental retardation was shown to impair learning and memory
in mice carrying a similar mutation [Sando et al., 2012]. Class II
HDACs have also been implicated indirectly in learning andmemory.
For example, HDAC6 reduction improving cognitive deficits in
Alzheimer’s disease models [Govindarajan et al., 2013]. However,
memory functions appear to be impaired by the loss of HDAC5,
which may have a role in memory consolidation [Agis-Balboa
et al., 2013].

ACETYLATION/DEACETYLATION FACTORS AND
THEIR ROLES IN NEURONAL REGENERATION

Upon injury, neurons activate multiple responses to enhance the
possibility of survival and recovery [Dancause and Nudo, 2011;
Yang and Yang, 2012]. Survival and regeneration are two
intertwined responses within injured neurons, and these share
overlapping signaling pathways andmechanisms. It has been shown
that acetylation/deacetylation processes influence neuronal/axonal
outgrowth and regeneration. Histone acetyltransferaces (HATs) such
as the CREB-binding protein (CBP)/p300 and the p300/CBP-
associated protein (P/CAF), acetylate histone H3K9/K14 and p53,
thus generating a transcriptional profile conducive for neuronal
outgrowth [Gaub et al., 2010]. Other than its well-known role in
neuronal apoptosis [Morrison et al., 2003], p53 in neurons also
influences axonal outgrowth and regeneration [Tedeschi and Di
Giovanni, 2009]. p53 acetylation has been shown to be specifically
involved in the promotion of neurite outgrowth by regulating of the
expression of the actin binding protein coronin 1b [Cai et al., 2007]
and Rab13 [Sakane et al., 2012], which modulates the actin
cytoskeleton [Di Giovanni et al., 2006]. With CBP/p300, p53 forms
a transcriptional complex that regulates the expression of axonal
growth-associated protein 43 (GAP43). Acetylated p53 could
promote GAP-43 expression through the engagement of the
neuronal GAP-43 promoter through CBP/p300, thus promoting

axon outgrowth [Tedeschi et al., 2009]. In an optic nerve crushmodel
of axonal injury, over-expression of the CBP/p300 can also promote
axonal regeneration of the optic nerve [Gaub et al., 2011]. Another
newly discovered a-tubulin acetyltransferase, MEC-17, appears to
be important in yet another related process in nervous system
development, namely neuronal migration. Highly expressed in the
cerebral cortex during embryonic development, MEC-17 deficiency
causes neuronal migratory and projection defects [Li et al., 2012].

In view of the above, HDAC inhibitors would be expected to have
neuroprotective and neurite growth promoting effects. HDAC
inhibitors have indeed been shown to attenuate poly-glutamine
extension-containing huntingtin-induced neurorodegeneration in
Drosophila models of Huntington’s disease (HD) [Steffan
et al., 2001]. HDAC inhibition has been recently shown to modify
the acetylation pattern of p53, which decreases its DNA-binding and
transcriptional activation of target genes and prevented DNA
damage-induced neurodegeneration [Brochier et al., 2013]. Inter-
estingly, although the HDAC1 inhibitor valproic acid delays retinal
ganglion cell death and enhances axonal regeneration after optic
nerve crush, its neuroprotection and neuroregeneration activity does
not appear to be dependent on altered histone-acetylation
[Biermann et al., 2010]. Other than being neuroprotective against
oxidative stress, pan-HDAC inhibition also promoted neurite
outgrowth on non-permissive CNS myelin substrates, an activity
that has been attributed to HDAC6 [Rivieccio et al., 2009]. Recent
findings have also implicated the involvement of HDAC5 in two
modes of action that promotes neuronal regeneration. The first
involves axonal injury induced HDAC5 nuclear exit, which changes
the transcription profile and activate a pro-regenerative gene-
expression program [Cho et al., 2013]. Cytoplasmic HDAC5 also
modulates tubulin deacetylation at the lesion site, which promoted
neurite outgrowth [Cho and Cavalli, 2012]. In the paragraphs below,
we focus on findings associated with the role of class II HDACs in
neuronal regeneration, in particular HDAC6 and HDAC5.

THE COMPLEX ROLES OF HDAC6 IN NEURONAL
PATHOLOGY

We first look at HDAC6, which is the classical tubulin deacetylating
enzyme [Hubbert et al., 2002]. HDAC6 is categorized under histone
deacetylase class IIb, together with HDAC10. Its domain structure is
distinct from all other HDACs, as it harbors two deacetylase domains
and a C-terminal zinc finger domain [Haberland et al., 2009]. The
protein is largely cytoplasmic, where it associates with microtubules
[Kawaguchi et al., 2003]. HDAC6 is not essential for mouse
development, but its absence results in tubulin hyperacetylation
in all tissues [Zhang et al., 2008]. In the mammalian brain, HDAC6 is
mainly found in neurons [Southwood et al., 2007]. Recent work has
implicated HDAC6, which levels are high at the dorsal and median
raphe nuclei, in the regulation of emotional expression in mice.
HDAC6-deficient mice exhibit antidepressant-like behavior in
behavioral tests, which was mimicked by HDAC6-specific inhibitor
[Fukada et al., 2012]. This phenomenon is possibly connected to
HDAC6’s deacetylation of the molecular chaperone heat shock
protein 90 (Hsp90), which is required for glucocorticoid receptor (GR)
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maturation. The latter process is compromised in HDAC6-deficient
cells [Kovacs et al., 2005]. Selective knockout of the highly abundant
HDAC6 in serotonin neurons reduced acute anxiety caused by
administration of corticosterone, and blocked the expression of
social deficits in this mouse model of traumatic stress [Espallergues
et al., 2012]. In another report, HDAC6 inhibition or its silencing was
shown to block the enhancement of glutamatergic transmission and
glutamate receptor trafficking in the prefrontal cortex by both acute
stress in vivo and corticosterone treatment in vitro [Lee et al., 2012].

A neuroprotective role for HDAC6 that was discovered early
pertains to the clearing of misfolded proteins and associations with
the pathologies of several neurodegenerative diseases involving the
formation of toxic cellular aggregates [Richter-Landsberg and Leyk,
2013]. Notably, HDAC6 could exert either a beneficial or a
deleterious effect depending on the disease context. HDAC6 binds
to both polyubiquitinated misfolded proteins and dynein motors,
thereby recruiting misfolded proteins to dynein motors for transport
to aggresomes [Kawaguchi et al., 2003; Fusco et al., 2012]. HDAC6
also modulates aggresome autophagy [Su et al., 2011] by controlling
the fusion of autophagosomes to lysosomes [Lee et al., 2010].
Parkinson’s disease (PD), a common movement disorder, is largely
idiopathic. However, a small fraction of patients, often with juvenile
onset of symptoms, has inherited mutations in several genes [Trinh
and Farrer, 2013]. The PARK2 gene product Parkin, an E3 ligase
mutated in juvenile onset PD, mediates K63-linked polyubiquitina-
tion of misfolded DJ-1, the PARK7 gene product [Bonifati
et al., 2003], which enhances the latter’s interaction with HDAC6.
Misfolded DJ-1 could thus be linked to the dynein motor and
transported to aggresomes [Olzmann et al., 2007]. HDAC6 is
concentrated in Lewy bodies (LBs) in PD and dementia with LBs
(DLB) [Kawaguchi et al., 2003; Miki et al., 2011], which consist of
aggregates of a-synuclein. Drosophila HDAC6 activity thus protects
dopaminergic neurons against a-synuclein toxicity by promoting
the formation of inclusion bodies [Du et al., 2010]. HDAC6 also
appears to be a critical link between macroautophagy and the
ubiquitin–proteasome system (UPS), particularly for the former to be
induced to compensate for the impairment of the latter. It is essential
for autophagy inmutations affecting the proteasome and in response
to UPS impairment in a Drosophila model of spinobulbar muscular
atrophy (SMA) [Pandey et al., 2007]. HDAC6 interacts with tau, the
microtubule-associated protein that is hyperphosphorylated and
forms the pathological hallmark of neurofibrillary tangles in
Alzheimer’s disease (AD) [Ding et al., 2008], and HDAC6 levels
were shown to be elevated in Alzheimic brains [Zhang et al., 2013].
Excess tau inhibits HDAC6 activity and attenuates autophagy, which
may contribute to AD pathology [Perez et al., 2009]. Over-expression
of HDAC6 enhanced deacetylation of microtubule, and could protect
against microtubule disintegration by the microtubule-severing
protein katanin, resulting from loss of functional tau [Sudo and
Baas, 2011].

On the other hand, HDAC6 activity could also exacerbate certain
neurodegenerative diseases. HDAC6 deacetylation of tubulin under-
lies the finding that HDAC inhibitors could alleviate axonal
microtubule-based transport defects in an HD model by promoting
tubulin acetylation [Dompierre et al., 2007]. In another neurodegen-
erative disease model of amyotrophic lateral sclerosis (ALS) induced

by transgenic expression of mutant superoxide dismutase 1
(SOD1G93A), HDAC6 deletion was shown to significantly extended
the survival of these mice via increase in tubulin acetylation [Taes
et al., 2013]. HDAC6 could in fact interact with mutant SOD1 and
affects its transport and aggregation [Gal et al., 2013]. In a neuronal
culture model of AD, inhibition of HDAC6 rescues hippocampal
neurons from amyloid-beta (Ab)-induced impairment of mitochon-
drial axonal transport [Kim et al., 2012]. HDAC6 is a substrate of the
E3 ubiquitin ligase carboxyl terminus of Hsp70-interacting protein
(CHIP) [Cook et al., 2012], and the latter also ubiquitinates and aids in
the clearing of tau [Petrucelli et al., 2004; Shimura et al., 2004;
Dickey et al., 2007, 2008]. Together with Hsp90, CHIP and HDAC6
form a network of chaperone complexes that modulates tau levels,
and consequently, AD pathology [Cook and Petrucelli, 2013]. As
pointed out in the paragraph above, tau could attenuate HDAC6-
induce autophagy, which might be deleterious in terms of AD
progression. However, a decrease in HDAC6 activity or expression
was on the other hand shown to promote tau clearance [Cook
et al., 2012].

The transactive response DNA binding protein of 43 kDa (TDP-43)
is a major neurodegenerative disease pathology-associated protein
whose cleaved form is concentrated in ubiquitin-positive inclusions
of frontotemporal dementia (FTD) and some forms of ALS [Neumann
et al., 2006]. TDP-43’s exact physiological roles is not yet
particularly clear, but the protein is predominantly nuclear, is a
RNA binding protein, and it regulates transcript of CNS genes. One of
the proteins which expression is positively regulated by TDP-43 is
HDAC6 [Fiesel et al., 2010], and TDP-43 binds to HDAC6 mRNA in
association with another ALS-associated gene product fused in
sarcoma/translated in liposarcoma (FUS/TLS) [Kim et al., 2010].
Interestingly, TDP-43 expression increases Parkin mRNA and
protein levels. The latter could mediate TDP-43 ubiquitination at
Lys-48 and Lys-63 [Hebron et al., 2013]. Both TDP-43 and Parkin
formed a protein complex with HDAC6 in the cytoplasm, which may
mediate TDP-43 cytoplasmic translocation and retention. It
therefore appears that HDAC6 interacts physically and functionally
with multiple neurodegenerative disease gene products and
modulates their pathology. HDAC6’s role in this regard is apparently
not limited to CNS neurons, as HDAC6 inhibitors also alleviates
axonal transport defects induced by mutant 27-kDa small heat-
shock protein gene (HSPB1) induced type II Charcot-Marie-Tooth
disease (CMT) [d‘Ydewalle et al., 2011], the latter a common
multigenic inherited disorder of the peripheral nervous system
[Vallat et al., 2013].

DOES HDAC6 HAVE A POSITIVE ROLE IN AXONAL
REGENERATION?

HDAC6’s implicated and complex role in neuroprotection and
neurodegenerative disease is well known [d‘Ydewalle et al., 2012]. In
terms of neuritogenesis, centrosome-associated HDAC6 promotes
ubiquitination of Cdc20, which stimulates the anaphase promoting
complex/cyclosome (APC/C) in postmitotic neurons to drive
dendritic outgrowth [Kim et al., 2009]. A role for HDAC6 in
neuronal or axonal regeneration could also be speculated from its
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enzymatic activity as a major tubulin deacetylase, and apparent
effects of its manipulations on axonal transport. Superficial
thoughts suggest that as tubulin deacetylation destabilizes micro-
tubules, and microtubule stabilization is critical for formation of
growth cone in lesioned axonal tips, HDAC6 activities in severed
axons would inhibit regeneration, while HDAC6 inhibition would
aid regeneration. These simple assumptions are indeed supported by
the observations that HDAC6 is elevated by oxidative injury, and
both HDAC6-silencing and specific pharmacological inhibition
promoted neurite outgrowth [Rivieccio et al., 2009]. How does
HDAC6 function in axonal transport, which is critical for neurite
outgrowth, affects regeneration could be a more complicated issue.
On one hand HDAC6 levels could be an important determinant that
facilitate aggresome formation and clearance, on the other blockage
of axonal transport resulting from pathological aggregates in
multiple disease models have been shown to be alleviated by HDAC6
inhibition [Dompierre et al., 2007; d‘Ydewalle et al., 2011; Kim
et al., 2012].

Axonal regeneration, and for that matter neuritogenesis in
general, is a process that requires extensive morphological changes
which likely requires varying degrees microtubule deacetylation at
some point in time. The binding of HDAC6 to the scaffolding septins,
for example, could negatively regulate microtubule stability during
axonal and dendritic outgrowth during development [Ageta-
Ishihara et al., 2013]. It has in fact been reported that for culture
hippocampal neurons, HDAC6 localizes to axons and it is distributed
in the distal region of axons during axonal elongation [Tapia
et al., 2010]. Both inhibition of HDAC6 activity or suppression of
HDAC6 levels slows axonal growth, impairs the concentration of
voltage gated sodium channels and ankyrin G at the axon initial
segment [Bender and Trussell, 2012], as well as altering the
distribution of the kinesin family motor protein, KIF5C along the
polarized domains of the neuron. These results cautioned against
ruling out a positive role for HDAC6 during axonal regeneration.

HDAC5’s ROLE IN AXONAL REGENERATION

We now turn to HDAC5, which is a relatively new player recently
found to play critical roles in axonal regeneration of peripheral
nerves. HDAC5 is grouped under histone deacetylase class IIa. Its
deletion does not critically affect mouse development, but HDAC5
deficient mice are sensitized to cardiac stress and develop
profoundly enlarged hearts in response to pressure overload, a
phenotype it shares with deficiency of HDAC9 [Chang et al., 2004].
Earlier work had implicated HDAC5 in mediating CREB2-dependent
histone deacetylation that underlies long-term-memory-related
synaptic plasticity in Aplysia [Guan et al., 2002]. In culture
hippocampal neurons, HDAC5 is primarily nuclear but could
translocate to the cytoplasm when the neurons are stimulated by
calcium flux through synaptic NMDA receptors or L-type calcium
channels [Chawla et al., 2003]. Its nuclear localization in neurons fits
its role in mediating epigenetic changes that are associated with
stress adaptation and cocaine addiction. Chronic exposure to
cocaine or stress decreases HDAC5 activity in the nucleus accumbens
(NAc), a major brain reward region, and this loss of HDAC5 causes

hypersensitive responses to chronic cocaine or stress [Renthal
et al., 2007]. In another recent report, it was shown that cocaine and
cAMP signaling induce the transient nuclear accumulation of
HDAC5 in rodent striatum. This nuclear import involves a protein
phosphatase 2A (PP2A)-dependent dephosphorylation of a Cdk5
phosphorylation site (S279) within the HDAC5 nuclear localization
sequence. Dephosphorylation of HDAC5 S279 in the NAc could
suppress the development of cocaine addiction in mice [Taniguchi
et al., 2012].

With the above in mind, it may have come as a mild surprise when
Cavalli and coworkers’ elegant experiments first demonstrated a role
for HDAC5 in axonal regeneration [Cho and Cavalli, 2012]. The
authors found that injury to axons of peripheral (but not CNS)
neurons (mouse sciatic nerves) generated a gradient of decrease
microtubule acetylation and increase tyrosination, which indicates
an increase in dynamic microtubules [Janke and Kneussel, 2010],
proximal to the lesion tip. This increased deacetylation is blocked by
the HDAC inhibitor scriptaid. Silencing of class I HDACs and HDAC4
did not attenuate deacetylation, whereas silencing of HDAC6 did.
Surprisingly, silencing of HDAC5 had an even greater effect on
tubulin deacetylation, as well as markedly suppressed axon
regeneration and growth cone dynamics. The injury increased
HDAC5 phosphorylation and a HDAC5 gradient, with its highest
concentration at the lesioned tip, was observed. It appears that
although acetylated tubulin is not a substrate of HDAC5 under basal
conditions, phosphorylated HDAC5 could become a major mediator
of tubulin deacetylation upon injury. HDAC5 phosphorylation was
apparently induced by a calcium flux at the injury site, which
generated a wave that travels back to the cell soma and initiated a
wave of calcium mediated response, prominently protein kinase C
(PKC) activation. PKC phosphorylation of HDAC5 have been
previously associated with its translocation to the cytosol [Vega
et al., 2004; Peng et al., 2009; Zhang et al., 2011]. PKC
phosphorylated HDAC5 has apparently an increased tubulin
deacetylase activity, as well as increased interaction with the
anterograde microtubule motor protein kinesin 1 that would explain
its accumulation at the lesion tip.

Is the above observation merely a reflection of a moonlighting
function of nuclear HDAC5, whose main basal deacetylase activity
must be on substrates in the nucleus? In follow up studies the same
authors showed that in dorsal root ganglion (DRG) neurons, injury-
induced calcium back-propagation activates PKCm/PKD, which
correlated with the latter’s translocation from the cytoplasm to the
nucleus [Cho et al., 2013]. PKCm phosphorylation of HDAC5
promotes its nuclear-cytoplasmic translocation, and subsequent
transport from the cell soma to the axon tip. Tubulin deacetylation
aside, another consequence of HDAC5 nuclear exit is histone H3
acetylation. The authors found that HDAC5 nuclear exit is required
for axonal regeneration, as mutant HDAC5 that is unable to exit the
nucleus strongly suppressed axon regeneration. In HDAC5 knock-
down cells which are also impaired in axonal regeneration, a
cytosol-trapped mutant (but not the nuclear-trapped mutant) could
rescue axon regrowth to control levels.

What exactly is the consequence of HDAC5 nuclear exit induced
by axonal injury? Comparative transcript profiling of cells
expressing the nuclear-trapped HDAC5 and control cells revealed
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that a set of HDAC5-dependent genes that was differentially
expressed upon injury. These genes include transcription factors
such as c-Fos and c-Jun [Raivich et al., 2004; Fontana et al., 2012],
and the Krueppel-like factors KLF4 and KLF5 [Qin et al., 2013] with
known roles in neuronal regeneration, as well as the stress sensor
growth arrest DNA damage-inducible (Gadd) 45a that is known to be
up-regulated in nerve injury [Befort et al., 2003]. HDAC5nuclear exit
appears therefore to induce a gene expression profile that is
presumably more pro-regenerative. The DRG neuron offers a model
of injury preconditioning, where neurons exposed to a prior
conditioning lesion would lead to an enhanced improvement in
axon regeneration compared to that of a naive neuron [Smith and
Skene, 1997; Neumann and Woolf, 1999]. Importantly, the authors
found that promoting HDAC5 nuclear exit in vivo with a PKC
activator generates a gene expression profile that partiallymimics an
injury preconditioning effect. HDAC5’s response to axonal injury
thus aid regeneration in two different modes. The first is localized
tubulin deacetylation at the lesion tip, of which the exact effect on
axonal regeneration is still not clear. The second is a more profound
change in epigenetic modification and gene expression profile
within the nucleus that collectively enhances the regenerative
capacity of the injured neuron.

EPILOGUE

The paragraphs above provide a brief outline of the involvement of
class II HDACs in neuronal regeneration. HDAC6 appears to be the
predominant cytoplasmic HDAC that modulates basal microtubule
dynamics by tubulin deacetylation. The complex effect of
manipulation of HDAC6 activity in neuronal regeneration is
discussed in light of what is known about the consequences of
HDAC6 inhibition in several models of neurodegenerative diseases.
HDAC6 may be important in toxic aggregate clearance via its ability
to bind ubiquitinated proteins and modulation autophagy (Fig. 1),
but on the other hand, inhibiting HDAC6 activity could stabilized
microtubules and ease congested axonal transport. HDAC6 also
appears to be important for axonal elongation duringmorphological
development of hippocampal neurons in culture [Tapia et al., 2010],
although its levels do not appear to change much upon injury to
sciatic nerve [Cho and Cavalli, 2012]. The fact that HDAC knockout
mice are viable and do not have gross nervous system abnormalities
suggest that its role may be compensated for by other tubulin
deacetylases. In pathological conditions when toxic aggregates
accumulate, HDAC6 may at earlier stages be important for axonal
aggregate clearance. However, at a later stage, its concomitant
accumulation with ubiquitinated aggregates may destabilize micro-
tubules and affect axonal transport—that’s probably when inhibition
of its deacetylase activity helps in preserving neuronal survival. It is
clear that HDAC6 will likely influence axonal regeneration, but it is
difficult at this point to surmise if the influence is critical, or indeed if
it’s positive or negative.

HDAC5, being mainly nuclear, likely has little or no role in
modulating microtubule dynamics in neurons under basal con-
ditions. However, upon injury to peripheral nerves, its PKC mediated
phosphorylation and consequential export into the cytoplasm

induced a more persistent histone H3 acetylation that changes
transcriptional profile of genes that are important in regeneration
(Fig. 1). The exact consequence of HDAC5 nuclear exit may be
context and cell type dependent. Other than PKC, calcium/
calmodulin-dependent protein kinase II (CaMKII) could also
phosphorylate HDAC5 and mediate its export in myocytes
[McKinsey et al., 2000]. In cultured cerebellar granule neurons,
CaMKII keeps HDAC5 in the cytoplasm, and HDAC5 nuclear
translocation causes apoptosis of depolarization-deprived cerebellar
granule neurons [Linseman et al., 2003]. On the other hand, it has
been recently shown that prolonged genotoxic stress in some cancer
cell lines also leads to HDAC5 nuclear exit, with consequential

Fig. 1. A schematic diagram illustrating the possible role of class II HDACs
during axonal injury. Axonal lesion impairs axonal traffic, and could result in
the accumulation of axonal cargo. Cytoplasmic HDAC6 (blue oval) may
facilitate transport of cargos and aggregates (gray circles) to aggresomes via
dynein (blue triangle pairs), and regulates autophagy. It may thus play a
beneficial early role in injured axon that is trafficking-impaired. However, its
subsequent accumulation with ubiquitinated aggregates may destabilize
microtubule through its deacetylase activity. Nuclear HDAC5 (yellow ovals)
is phosphorylated by PKCm, activated by the retrograde calcium flux from the
site of injury to the cell soma. Phosphorylation of HDAC5 facilitates both its
nuclear exit and engagement of kinesin, and is transported to the distal tip of
the injured axon by kinesin motors (red triangle pairs). Its mode of action at the
lesion site in facilitating regeneration is unclear.
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increase in Lys 120 acetylation of p53 and selective transactivation
of proapoptotic target genes [Sen et al., 2013]. The consequence of
prolonged HDAC5 nuclear exit in peripheral nerves is not yet clear.

Once in the cytosol of the cell soma, phosphorylated HDAC5
appears to be able to engage kinesin and be transported in an
anterograde manner to axonal tips. Although this accumulation of
HDAC5 at the lesion tip appears important for axonal regeneration,
exactly what it does to help axonal tip regrowth is unclear.
Understanding of the roles for HDAC6 and HDAC5 at the injured
axonal tip, and the balance of tubulin and actin dynamics in creating
a functional growth cone, would be an important pursuit. Another,
equally important point to investigate is why the HDAC5-mediated
pro-regenerative mechanism is only operation in peripheral
neurons, and if this could be harness or manipulated to aid
regeneration of injured CNS axons.
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